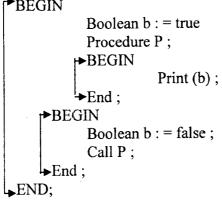
Sixth Semester B.E. Degree Examination, December 2010 Compiler Design


Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Explain with neat diagram, the various phases of a compiler. Mention the input and output for each phase. (08 Marks)
 - b. Define static and dynamic scoping. Explain the working and output of the following programming segment if scoping used is static and dynamic:

(04 Marks)

- c. With an example, explain the use and coordination between 'LEX' and 'YACC' the compiler writing tools. (08 Marks)
- 2 Consider the grammar:

$$E \rightarrow 5 + T | 3 - T$$

$$T \rightarrow V | V * V | V + V$$

$$V \rightarrow a | b$$

- a. What is the use of left factoring? Do the left factoring for the above grammar. (04 Marks)
- b. Write an algorithm to obtain the FIRST and Follow table. Obtain FIRST and Follow table for the above grammar. (08 Marks)
- c. Write an algorithm to construct the predictive parsing table. Construct predictive parsing table for the above grammar. (08 Marks)
- 3 Consider the grammar:

$$S \rightarrow E\#$$

$$E \rightarrow E - T$$

$$E \rightarrow T$$

$$T \rightarrow F \uparrow T$$

 $T \rightarrow F$

 $F \rightarrow (E)$

 $F \rightarrow i$

- a. Write the algorithm to construct basic finite state control m/c for SLR (1) and action α goto functions entries.
 (08 Marks)
- b. Construct the following for the above grammar:
 - i) Basic finite state control.
 - ii) SLR (1) parsing table containing action and goto function entries.

(12 Marks)

(10 Marks)

4		Consider the grammar:	
		$G \rightarrow S$	
		$S \rightarrow E = E$	
		$S \rightarrow f$	
		$E \rightarrow T$	
		$E \rightarrow E + T$	
		$T \rightarrow f$	
		$T \rightarrow T * f$	
		when terminal symbols are $\{=,+,*,f\}$	
	a. b.	Write an algorithm to construct finite state control for LR(1) parser. Construct LR(1) finite state control and explain the algorithm to construct pa	(08 Marks)
		containing action α goto function entries.	(12 Marks)
		PART – B	
5	a.	With an example, explain the concept of syntax directed definition.	(08 Marks)
	b.	Write the grammar and syntax directed definitions for a simple desk calculator	and show
		annotated parse tree for the expression $(3+4)*(5+6)$.	(12 Marks)
6	a.	What is DAG? Construct a DAG for the following expression, $a + a * (b - c) + (b - c)$	c)*d.
			(04 Marks)
	b.	With an example, explain the various formats of intermediate code.	(10 Marks)
	c.	Write quadruple representation for, $a + a * (b-c) + (b-c) * d$.	(06 Marks)
7	a.	Explain the run time storage scheme for C++-language. Give the structure of	activation
		record and explain with suitable example.	(12 Marks)
	b.	Explain the design goals for garbage collectors.	(08 Marks)
8	a.	Discuss the following terms:	
		i) Basic blocks	
		ii) Next-use information	
		iii) Flow graph	(10 Marks)
	b.	Explain the following code optimization with example:	,

* * * *

i) Finding local common sub expression.ii) Dead code elimination.

USN

Sixth Semester B.E. Degree Examination, December 2010 Compiler Design

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART-A

1 a. Explain the different phases of a compiler, with a neat diagram.

(10 Marks)

b. Explain the different applications of compiler technology.

(06 Marks)

c. Provide transition diagram to recognize: pipe, pet, item, petrol.

04 Marks)

2 a. Consider the following grammar:

 $R \rightarrow R'l'R | RR | R*|(R)|a|b|c$

Note: Here 'l' is a 'or' symbol and not a separator between alternatives.

Check if the grammar is ambiguous or not. If it is an ambiguous grammar, construct an equivalent unambiguous grammar. (08 Marks)

b. Consider the following grammar:

 $E \rightarrow E * T \mid T$

 $T \rightarrow id + T \mid id$

i) Check if it is an LL(1) grammar.

Show the sequence of moves made by the parser for w = id + id * id.

(12 Marks)

3 a. Define: i) Handle, ii) Handle pruning.

(06 Marks) (04 Marks)

b. Explain LR parsing algorithm.

c. Check if the following is SLR(1) grammar:

 $S \rightarrow Aa \mid bAc \mid dc \mid bda$

 $A \rightarrow d$

(10 Marks)

a. Construct LR(1) items for the following grammar and check if it is CLR(1) grammar:
 S → AaAb | BbBa

 $A \rightarrow \in$

 $B \rightarrow \in$

(07 Marks)

b. Construct LALR parsing table for the following grammar:

 $S \rightarrow E$

 $E \rightarrow (L)/a$

 $L \rightarrow EL$

(08 IMarks)

c. Write a short note on parser generators.

(05 Marks)

PART-B

- 5 a. Define attribute grammar. Explain synthesized and inherited attributes, with an example.
 - b. Write SDD for a simple desk calculator. Construct annotated parse tree for the expression 2 * 5 + 4n using SDD constructed for a simple desk calculator. (08 Marks)
 - c. Explain any two applications of SDT.

(06 Marks)

6 a. Explain value number method algorithm for constructing the nodes of a DAG. Construct DAG for the expression:

((x+y)-((x+y)*(x-y)))+((x+y)*(x-y)) (38 Marks)

- b. Define short circuit code. Give SDD for flow-of-control statements. (36 Marks)
- c. Explain unification algorithm, with an example.

(06 Marks)

7 a. Explain the heap management, in detail.

(10 Marks)

b. Explain the activation trees and activation recorder.

(10 Marks)

8 a. Explain the issues involved in the design of code generator.

(06 Marks)

b. Construct basic blocks and flow graph for:

for i from 1 to 10 do

for i from 1 to 10 do

a[i, j] = 0.0;

for i from 1 to 10 do

a[i,j]=1.0;

* * * * *

(08 Marks) (06 Marks)

c. Explain the algorithm for a simple code generator.